Condensations of Tychonoff universal topological algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 529-533
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $(L,\Cal T)$ be a Tychonoff (regular) paratopological group or algebra over a field or ring $K$ or a topological semigroup. If $\operatorname{nw}(L,\Cal T)\leq \tau$ and $\operatorname{nw}(K)\leq\tau $, then there exists a Tychonoff (regular) topology $\Cal T^*\subseteq \Cal T$ such that $w(L,\Cal T^*)\leq\tau$ and $(L,\Cal T^*)$ is a paratopological group, algebra over $K$ or a topological semigroup respectively.
Let $(L,\Cal T)$ be a Tychonoff (regular) paratopological group or algebra over a field or ring $K$ or a topological semigroup. If $\operatorname{nw}(L,\Cal T)\leq \tau$ and $\operatorname{nw}(K)\leq\tau $, then there exists a Tychonoff (regular) topology $\Cal T^*\subseteq \Cal T$ such that $w(L,\Cal T^*)\leq\tau$ and $(L,\Cal T^*)$ is a paratopological group, algebra over $K$ or a topological semigroup respectively.
Classification :
22A05, 22D05, 54C50, 54H11
Keywords: universal algebra; paratopological group; topological group
Keywords: universal algebra; paratopological group; topological group
@article{CMUC_2001_42_3_a10,
author = {Hern\'andez, Constancio},
title = {Condensations of {Tychonoff} universal topological algebras},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {529--533},
year = {2001},
volume = {42},
number = {3},
mrnumber = {1860241},
zbl = {1053.54044},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_3_a10/}
}
Hernández, Constancio. Condensations of Tychonoff universal topological algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 529-533. http://geodesic.mathdoc.fr/item/CMUC_2001_42_3_a10/