Homomorphic images of subdirectly irreducible groupoids
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 443-450
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A groupoid $H$ is a homomorphic image of a subdirectly irreducible groupoid $G$ (over its monolith) if and only if $H$ has a smallest ideal.
A groupoid $H$ is a homomorphic image of a subdirectly irreducible groupoid $G$ (over its monolith) if and only if $H$ has a smallest ideal.
@article{CMUC_2001_42_3_a1,
author = {Stanovsk\'y, David},
title = {Homomorphic images of subdirectly irreducible groupoids},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {443--450},
year = {2001},
volume = {42},
number = {3},
mrnumber = {1859591},
zbl = {1057.20049},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_3_a1/}
}
Stanovský, David. Homomorphic images of subdirectly irreducible groupoids. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 443-450. http://geodesic.mathdoc.fr/item/CMUC_2001_42_3_a1/