On remote points, non-normality and $\pi$-weight $\omega_1$
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 379-384
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show, in particular, that every remote point of $X$ is a nonnormality point of $\beta X$ if $X$ is a locally compact Lindelöf separable space without isolated points and $\pi w(X)\leq \omega _{1}$.
We show, in particular, that every remote point of $X$ is a nonnormality point of $\beta X$ if $X$ is a locally compact Lindelöf separable space without isolated points and $\pi w(X)\leq \omega _{1}$.
Classification :
54D20, 54D35, 54D40
Keywords: remote point; butterfly-point; nonnormality point
Keywords: remote point; butterfly-point; nonnormality point
@article{CMUC_2001_42_2_a14,
author = {Logunov, Sergei},
title = {On remote points, non-normality and $\pi$-weight $\omega_1$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {379--384},
year = {2001},
volume = {42},
number = {2},
mrnumber = {1832156},
zbl = {1053.54031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_2_a14/}
}
Logunov, Sergei. On remote points, non-normality and $\pi$-weight $\omega_1$. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 379-384. http://geodesic.mathdoc.fr/item/CMUC_2001_42_2_a14/