On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 83-98
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show compactness of bounded sets of weak solutions to the isentropic compressible Navier-Stokes equations in three space dimensions under the hypothesis that the adiabatic constant $\gamma >3/2$.
We show compactness of bounded sets of weak solutions to the isentropic compressible Navier-Stokes equations in three space dimensions under the hypothesis that the adiabatic constant $\gamma >3/2$.
Classification :
35B05, 35Q30, 76N10
Keywords: compressible flow; weak solutions; compactness
Keywords: compressible flow; weak solutions; compactness
@article{CMUC_2001_42_1_a5,
author = {Feireisl, Eduard},
title = {On compactness of solutions to the compressible isentropic {Navier-Stokes} equations when the density is not square integrable},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {83--98},
year = {2001},
volume = {42},
number = {1},
mrnumber = {1825374},
zbl = {1115.35096},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_1_a5/}
}
TY - JOUR AU - Feireisl, Eduard TI - On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 83 EP - 98 VL - 42 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_2001_42_1_a5/ LA - en ID - CMUC_2001_42_1_a5 ER -
%0 Journal Article %A Feireisl, Eduard %T On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable %J Commentationes Mathematicae Universitatis Carolinae %D 2001 %P 83-98 %V 42 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_2001_42_1_a5/ %G en %F CMUC_2001_42_1_a5
Feireisl, Eduard. On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 83-98. http://geodesic.mathdoc.fr/item/CMUC_2001_42_1_a5/