Connected Hausdorff subtopologies
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 195-201
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A non-connected, Hausdorff space with a countable network has a connected Hausdorff-subtopology iff the space is not-H-closed. This result answers two questions posed by Tkačenko, Tkachuk, Uspenskij, and Wilson [Comment. Math. Univ. Carolinae 37 (1996), 825--841]. A non-H-closed, Hausdorff space with countable $\pi $-weight and no connected, Hausdorff subtopology is provided.
A non-connected, Hausdorff space with a countable network has a connected Hausdorff-subtopology iff the space is not-H-closed. This result answers two questions posed by Tkačenko, Tkachuk, Uspenskij, and Wilson [Comment. Math. Univ. Carolinae 37 (1996), 825--841]. A non-H-closed, Hausdorff space with countable $\pi $-weight and no connected, Hausdorff subtopology is provided.
Classification :
54A10, 54C10, 54D05, 54D35
Keywords: connected; H-closed; extensions; condensations
Keywords: connected; H-closed; extensions; condensations
@article{CMUC_2001_42_1_a14,
author = {Porter, Jack},
title = {Connected {Hausdorff} subtopologies},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {195--201},
year = {2001},
volume = {42},
number = {1},
mrnumber = {1825383},
zbl = {1053.54002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_1_a14/}
}
Porter, Jack. Connected Hausdorff subtopologies. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 195-201. http://geodesic.mathdoc.fr/item/CMUC_2001_42_1_a14/