For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 153-158
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $X$ be a non-reflexive real Banach space. Then for each norm $|\cdot|$ from a dense set of equivalent norms on $X$ (in the metric of uniform convergence on the unit ball of $X$), there exists a three-point set that has no Chebyshev center in $(X,|\cdot|)$. This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.
Let $X$ be a non-reflexive real Banach space. Then for each norm $|\cdot|$ from a dense set of equivalent norms on $X$ (in the metric of uniform convergence on the unit ball of $X$), there exists a three-point set that has no Chebyshev center in $(X,|\cdot|)$. This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.
Classification :
41A65, 46B03, 46B20
Keywords: renormings; non-reflexive Banach spaces; Chebyshev centers
Keywords: renormings; non-reflexive Banach spaces; Chebyshev centers
@article{CMUC_2001_42_1_a10,
author = {Vesel\'y, Libor},
title = {For a dense set of equivalent norms, a non-reflexive {Banach} space contains a triangle with no {Chebyshev} center},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {153--158},
year = {2001},
volume = {42},
number = {1},
mrnumber = {1825379},
zbl = {1056.46009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_1_a10/}
}
TY - JOUR AU - Veselý, Libor TI - For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 153 EP - 158 VL - 42 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_2001_42_1_a10/ LA - en ID - CMUC_2001_42_1_a10 ER -
%0 Journal Article %A Veselý, Libor %T For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center %J Commentationes Mathematicae Universitatis Carolinae %D 2001 %P 153-158 %V 42 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_2001_42_1_a10/ %G en %F CMUC_2001_42_1_a10
Veselý, Libor. For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 153-158. http://geodesic.mathdoc.fr/item/CMUC_2001_42_1_a10/