Spaces not distinguishing convergences
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 829-842
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In the present paper we introduce a convergence condition $(\Sigma ')$ and continue the study of ``not distinguish'' for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.
In the present paper we introduce a convergence condition $(\Sigma ')$ and continue the study of ``not distinguish'' for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.
Classification :
03E17, 54A20, 54C30, 54C35, 54G99
Keywords: P-; QN-; $\Sigma $-; $\Sigma '$-; $\Sigma ^*$-; $\Sigma _c$-convergence; a space not distinguishing convergences
Keywords: P-; QN-; $\Sigma $-; $\Sigma '$-; $\Sigma ^*$-; $\Sigma _c$-convergence; a space not distinguishing convergences
@article{CMUC_2000_41_4_a16,
author = {Repick\'y, Miroslav},
title = {Spaces not distinguishing convergences},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {829--842},
year = {2000},
volume = {41},
number = {4},
mrnumber = {1800160},
zbl = {1067.54028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000_41_4_a16/}
}
Repický, Miroslav. Spaces not distinguishing convergences. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 829-842. http://geodesic.mathdoc.fr/item/CMUC_2000_41_4_a16/