On Mazurkiewicz sets
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 817-819
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A Mazurkiewicz set $M$ is a subset of a plane with the property that each straight line intersects $M$ in exactly two points. We modify the original construction to obtain a Mazurkiewicz set which does not contain vertices of an equilateral triangle or a square. This answers some questions by L.D. Loveland and S.M. Loveland. We also use similar methods to construct a bounded noncompact, nonconnected generalized Mazurkiewicz set.
A Mazurkiewicz set $M$ is a subset of a plane with the property that each straight line intersects $M$ in exactly two points. We modify the original construction to obtain a Mazurkiewicz set which does not contain vertices of an equilateral triangle or a square. This answers some questions by L.D. Loveland and S.M. Loveland. We also use similar methods to construct a bounded noncompact, nonconnected generalized Mazurkiewicz set.
Classification :
54B20, 54C99, 54F15, 54G20
Keywords: Mazurkiewicz set; GM-set; double midset property
Keywords: Mazurkiewicz set; GM-set; double midset property
@article{CMUC_2000_41_4_a14,
author = {Charatonik, Marta N. and Charatonik, W{\l}odzimierz J.},
title = {On {Mazurkiewicz} sets},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {817--819},
year = {2000},
volume = {41},
number = {4},
mrnumber = {1800162},
zbl = {1052.54030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000_41_4_a14/}
}
Charatonik, Marta N.; Charatonik, Włodzimierz J. On Mazurkiewicz sets. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 817-819. http://geodesic.mathdoc.fr/item/CMUC_2000_41_4_a14/