Locally minimal topological groups and their embeddings into products of $o$-bounded groups
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 811-815
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It is proven that an infinite-dimensional Banach space (considered as an Abelian topological group) is not topologically isomorphic to a subgroup of a product of $\sigma $-compact (or more generally, $o$-bounded) topological groups. This answers a question of M. Tkachenko.
It is proven that an infinite-dimensional Banach space (considered as an Abelian topological group) is not topologically isomorphic to a subgroup of a product of $\sigma $-compact (or more generally, $o$-bounded) topological groups. This answers a question of M. Tkachenko.
Classification :
22A05, 22E15, 54H11
Keywords: $\omega$-bounded group; $\sigma$-bounded group; $o$-bounded group; Weil complete group; locally minimal group; Lie group
Keywords: $\omega$-bounded group; $\sigma$-bounded group; $o$-bounded group; Weil complete group; locally minimal group; Lie group
@article{CMUC_2000_41_4_a13,
author = {Banakh, T.},
title = {Locally minimal topological groups and their embeddings into products of $o$-bounded groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {811--815},
year = {2000},
volume = {41},
number = {4},
mrnumber = {1800163},
zbl = {1049.54034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000_41_4_a13/}
}
TY - JOUR AU - Banakh, T. TI - Locally minimal topological groups and their embeddings into products of $o$-bounded groups JO - Commentationes Mathematicae Universitatis Carolinae PY - 2000 SP - 811 EP - 815 VL - 41 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_2000_41_4_a13/ LA - en ID - CMUC_2000_41_4_a13 ER -
Banakh, T. Locally minimal topological groups and their embeddings into products of $o$-bounded groups. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 811-815. http://geodesic.mathdoc.fr/item/CMUC_2000_41_4_a13/