Three-and-more set theorems
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 793-801
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we generalize classical 3-set theorem related to stable partitions of arbitrary mappings due to Erd\H{o}s-de Bruijn, Katětov and Kasteleyn. We consider a structural generalization of this result to partitions preserving sets of inequalities and characterize all finite sets of such inequalities which can be preserved by a ``small'' coloring. These results are also related to graph homomorphisms and (oriented) colorings.
In this paper we generalize classical 3-set theorem related to stable partitions of arbitrary mappings due to Erd\H{o}s-de Bruijn, Katětov and Kasteleyn. We consider a structural generalization of this result to partitions preserving sets of inequalities and characterize all finite sets of such inequalities which can be preserved by a ``small'' coloring. These results are also related to graph homomorphisms and (oriented) colorings.
@article{CMUC_2000_41_4_a11,
author = {Hell, Pavol and Ne\v{s}et\v{r}il, J. and Raspaud, A. and Sopena, E.},
title = {Three-and-more set theorems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {793--801},
year = {2000},
volume = {41},
number = {4},
mrnumber = {1800165},
zbl = {1045.05086},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000_41_4_a11/}
}
TY - JOUR AU - Hell, Pavol AU - Nešetřil, J. AU - Raspaud, A. AU - Sopena, E. TI - Three-and-more set theorems JO - Commentationes Mathematicae Universitatis Carolinae PY - 2000 SP - 793 EP - 801 VL - 41 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_2000_41_4_a11/ LA - en ID - CMUC_2000_41_4_a11 ER -
Hell, Pavol; Nešetřil, J.; Raspaud, A.; Sopena, E. Three-and-more set theorems. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 793-801. http://geodesic.mathdoc.fr/item/CMUC_2000_41_4_a11/