Cardinal invariants of the lattice of partitions
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 543-558
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study cardinal coefficients related to combinatorial properties of partitions of $\omega$ with respect to the order of almost containedness.
We study cardinal coefficients related to combinatorial properties of partitions of $\omega$ with respect to the order of almost containedness.
Classification :
03E05, 03E35
Keywords: lattice of partitions; almost containedness; tower number; splitting number; reaping number; Cohen's forcing
Keywords: lattice of partitions; almost containedness; tower number; splitting number; reaping number; Cohen's forcing
@article{CMUC_2000_41_3_a10,
author = {Majcher-Iwanow, Barbara},
title = {Cardinal invariants of the lattice of partitions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {543--558},
year = {2000},
volume = {41},
number = {3},
mrnumber = {1795084},
zbl = {1034.03050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000_41_3_a10/}
}
Majcher-Iwanow, Barbara. Cardinal invariants of the lattice of partitions. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 543-558. http://geodesic.mathdoc.fr/item/CMUC_2000_41_3_a10/