Smooth invariants and $\omega$-graded modules over $k[X]$
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 445-448
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It is shown that every $\omega$-graded module over $k[X]$ is a direct sum of cyclics. The invariants for such modules are exactly the smooth invariants of valuated abelian $p$-groups.
It is shown that every $\omega$-graded module over $k[X]$ is a direct sum of cyclics. The invariants for such modules are exactly the smooth invariants of valuated abelian $p$-groups.
Classification :
13F20, 16G20, 16W50, 20K10
Keywords: filtered modules; valuated groups; representations of quivers
Keywords: filtered modules; valuated groups; representations of quivers
@article{CMUC_2000_41_3_a1,
author = {Richman, Fred},
title = {Smooth invariants and $\omega$-graded modules over $k[X]$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {445--448},
year = {2000},
volume = {41},
number = {3},
mrnumber = {1795075},
zbl = {1038.16013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000_41_3_a1/}
}
Richman, Fred. Smooth invariants and $\omega$-graded modules over $k[X]$. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 445-448. http://geodesic.mathdoc.fr/item/CMUC_2000_41_3_a1/