Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 651-663
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this note the well-posedness of the Dirichlet problem (1.2) below is proved in the class $H^{1,p}_0(\Omega)$ for all $1$ and, as a consequence, the Hölder regularity of the solution $u$. $\Cal L$ is an elliptic second order operator with discontinuous coefficients $(VMO)$ and the lower order terms belong to suitable Lebesgue spaces.
In this note the well-posedness of the Dirichlet problem (1.2) below is proved in the class $H^{1,p}_0(\Omega)$ for all $1$ and, as a consequence, the Hölder regularity of the solution $u$. $\Cal L$ is an elliptic second order operator with discontinuous coefficients $(VMO)$ and the lower order terms belong to suitable Lebesgue spaces.
Classification :
35B65, 35J15, 35J30, 35R05, 45P05, 46E35, 46N20
Keywords: elliptic equations; Morrey spaces
Keywords: elliptic equations; Morrey spaces
@article{CMUC_1999_40_4_a4,
author = {Ragusa, Maria Alessandra},
title = {Elliptic boundary value problem in {Vanishing} {Mean} {Oscillation} hypothesis},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {651--663},
year = {1999},
volume = {40},
number = {4},
mrnumber = {1756544},
zbl = {1010.46032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_4_a4/}
}
TY - JOUR AU - Ragusa, Maria Alessandra TI - Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 651 EP - 663 VL - 40 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1999_40_4_a4/ LA - en ID - CMUC_1999_40_4_a4 ER -
Ragusa, Maria Alessandra. Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 651-663. http://geodesic.mathdoc.fr/item/CMUC_1999_40_4_a4/