$C_p(I)$ is not subsequential
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 785-788
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
If a separable dense in itself metric space is not a union of countably many nowhere dense subsets, then its $C_p$-space is not subsequential.
If a separable dense in itself metric space is not a union of countably many nowhere dense subsets, then its $C_p$-space is not subsequential.
@article{CMUC_1999_40_4_a14,
author = {Malykhin, V. I.},
title = {$C_p(I)$ is not subsequential},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {785--788},
year = {1999},
volume = {40},
number = {4},
mrnumber = {1756553},
zbl = {1009.54033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_4_a14/}
}
Malykhin, V. I. $C_p(I)$ is not subsequential. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 785-788. http://geodesic.mathdoc.fr/item/CMUC_1999_40_4_a14/