Pervasive algebras on planar compacts
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 491-494
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We characterize compact sets $X$ in the Riemann sphere $\Bbb S$ not separating $\Bbb S$ for which the algebra $A(X)$ of all functions continuous on $\Bbb S$ and holomorphic on $\Bbb S\smallsetminus X$, restricted to the set $X$, is pervasive on $X$.
We characterize compact sets $X$ in the Riemann sphere $\Bbb S$ not separating $\Bbb S$ for which the algebra $A(X)$ of all functions continuous on $\Bbb S$ and holomorphic on $\Bbb S\smallsetminus X$, restricted to the set $X$, is pervasive on $X$.
Classification :
30E10, 46J10
Keywords: compact Hausdorff space $X$; the sup-norm algebra $C(X)$ of all complex-valued continuous functions on $X$; its closed subalgebras (called function algebras); pervasive algebras; the algebra $A(X)$ of all functions continuous on $\Bbb S$ and holomorphic on $\Bbb S\smallsetminus X$
Keywords: compact Hausdorff space $X$; the sup-norm algebra $C(X)$ of all complex-valued continuous functions on $X$; its closed subalgebras (called function algebras); pervasive algebras; the algebra $A(X)$ of all functions continuous on $\Bbb S$ and holomorphic on $\Bbb S\smallsetminus X$
@article{CMUC_1999_40_3_a8,
author = {\v{C}erych, Jan},
title = {Pervasive algebras on planar compacts},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {491--494},
year = {1999},
volume = {40},
number = {3},
mrnumber = {1732486},
zbl = {1010.46051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a8/}
}
Čerych, Jan. Pervasive algebras on planar compacts. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 491-494. http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a8/