Vector integral equations with discontinuous right-hand side
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 483-490
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We deal with the integral equation $u(t)=f(\int_Ig(t,z)\,u(z)\,dz)$, with $t\in I=[0,1]$, $f:\bold R^n\to\bold R^n$ and $g:I\times I\to[0,+\infty[$. We prove an existence theorem for solutions $u\in L^\infty(I,\bold R^n)$ where the function $f$ is not assumed to be continuous, extending a result previously obtained for the case $n=1$.
We deal with the integral equation $u(t)=f(\int_Ig(t,z)\,u(z)\,dz)$, with $t\in I=[0,1]$, $f:\bold R^n\to\bold R^n$ and $g:I\times I\to[0,+\infty[$. We prove an existence theorem for solutions $u\in L^\infty(I,\bold R^n)$ where the function $f$ is not assumed to be continuous, extending a result previously obtained for the case $n=1$.
Classification :
45G10, 47H04, 47H15, 47J05, 47N20
Keywords: vector integral equations; bounded solutions; discontinuity
Keywords: vector integral equations; bounded solutions; discontinuity
@article{CMUC_1999_40_3_a7,
author = {Cammaroto, Filippo and Cubiotti, Paolo},
title = {Vector integral equations with discontinuous right-hand side},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {483--490},
year = {1999},
volume = {40},
number = {3},
mrnumber = {1732487},
zbl = {1065.47505},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a7/}
}
TY - JOUR AU - Cammaroto, Filippo AU - Cubiotti, Paolo TI - Vector integral equations with discontinuous right-hand side JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 483 EP - 490 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a7/ LA - en ID - CMUC_1999_40_3_a7 ER -
Cammaroto, Filippo; Cubiotti, Paolo. Vector integral equations with discontinuous right-hand side. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 483-490. http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a7/