Nonuniqueness for some linear oblique derivative problems for elliptic equations
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 477-481
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It is well-known that the ``standard'' oblique derivative problem, $\Delta u = 0$ in $\Omega$, $\partial u/\partial \nu-u=0$ on $\partial\Omega$ ($\nu$ is the unit inner normal) has a unique solution even when the boundary condition is not assumed to hold on the entire boundary. When the boundary condition is modified to satisfy an obliqueness condition, the behavior at a single boundary point can change the uniqueness result. We give two simple examples to demonstrate what can happen.
It is well-known that the ``standard'' oblique derivative problem, $\Delta u = 0$ in $\Omega$, $\partial u/\partial \nu-u=0$ on $\partial\Omega$ ($\nu$ is the unit inner normal) has a unique solution even when the boundary condition is not assumed to hold on the entire boundary. When the boundary condition is modified to satisfy an obliqueness condition, the behavior at a single boundary point can change the uniqueness result. We give two simple examples to demonstrate what can happen.
Classification :
35A05, 35B65, 35J25
Keywords: elliptic equations; uniqueness; a priori estimates; linear problems; boundary value problems
Keywords: elliptic equations; uniqueness; a priori estimates; linear problems; boundary value problems
@article{CMUC_1999_40_3_a6,
author = {Lieberman, Gary M.},
title = {Nonuniqueness for some linear oblique derivative problems for elliptic equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {477--481},
year = {1999},
volume = {40},
number = {3},
mrnumber = {1732488},
zbl = {1064.35508},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a6/}
}
TY - JOUR AU - Lieberman, Gary M. TI - Nonuniqueness for some linear oblique derivative problems for elliptic equations JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 477 EP - 481 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a6/ LA - en ID - CMUC_1999_40_3_a6 ER -
Lieberman, Gary M. Nonuniqueness for some linear oblique derivative problems for elliptic equations. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 477-481. http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a6/