An identity related to centralizers in semiprime rings
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 447-456
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The purpose of this paper is to prove the following result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping, such that $2T(x^2)=T(x)x+xT(x)$ holds for all $x\in R$. In this case $T$ is left and right centralizer.
The purpose of this paper is to prove the following result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping, such that $2T(x^2)=T(x)x+xT(x)$ holds for all $x\in R$. In this case $T$ is left and right centralizer.
Classification :
16A12, 16A68, 16A72, 16N60, 16R50, 16W10, 16W20
Keywords: prime ring; semiprime ring; derivation; Jordan derivation; left (right) centralizer; left (right) Jordan centralizer
Keywords: prime ring; semiprime ring; derivation; Jordan derivation; left (right) centralizer; left (right) Jordan centralizer
@article{CMUC_1999_40_3_a4,
author = {Vukman, Joso},
title = {An identity related to centralizers in semiprime rings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {447--456},
year = {1999},
volume = {40},
number = {3},
mrnumber = {1732490},
zbl = {1014.16021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a4/}
}
Vukman, Joso. An identity related to centralizers in semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 447-456. http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a4/