An example of strongly self-homeomorphic dendrite not pointwise self-homeomorphic
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 571-576
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Such spaces in which a homeomorphic image of the whole space can be found in every open set are called {\it self-homeomorphic}. W.J. Charatonik and A. Dilks asked if any strongly self-homeomorphic dendrite is pointwise self-homeomorphic. We give a negative answer in Example 2.1.
Such spaces in which a homeomorphic image of the whole space can be found in every open set are called {\it self-homeomorphic}. W.J. Charatonik and A. Dilks asked if any strongly self-homeomorphic dendrite is pointwise self-homeomorphic. We give a negative answer in Example 2.1.
Classification :
54C25, 54F15, 54F50
Keywords: continuum; dendrite; fan; triod; self-homeomorphic
Keywords: continuum; dendrite; fan; triod; self-homeomorphic
@article{CMUC_1999_40_3_a15,
author = {Pyrih, Pavel},
title = {An example of strongly self-homeomorphic dendrite not pointwise self-homeomorphic},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {571--576},
year = {1999},
volume = {40},
number = {3},
mrnumber = {1732479},
zbl = {1010.54038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a15/}
}
TY - JOUR AU - Pyrih, Pavel TI - An example of strongly self-homeomorphic dendrite not pointwise self-homeomorphic JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 571 EP - 576 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a15/ LA - en ID - CMUC_1999_40_3_a15 ER -
Pyrih, Pavel. An example of strongly self-homeomorphic dendrite not pointwise self-homeomorphic. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 571-576. http://geodesic.mathdoc.fr/item/CMUC_1999_40_3_a15/