A short proof on lifting of projection properties in Riesz spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 277-278
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $L$ be an Archimedean Riesz space with a weak order unit $u$. A sufficient condition under which Dedekind [$\sigma$-]completeness of the principal ideal $A_{u}$ can be lifted to $L$ is given (Lemma). This yields a concise proof of two theorems of Luxemburg and Zaanen concerning projection properties of $C(X)$-spaces. Similar results are obtained for the Riesz spaces $B_{n}(T)$, $n=1, 2, \dots$, of all functions of the $n$th Baire class on a metric space $T$.
Let $L$ be an Archimedean Riesz space with a weak order unit $u$. A sufficient condition under which Dedekind [$\sigma$-]completeness of the principal ideal $A_{u}$ can be lifted to $L$ is given (Lemma). This yields a concise proof of two theorems of Luxemburg and Zaanen concerning projection properties of $C(X)$-spaces. Similar results are obtained for the Riesz spaces $B_{n}(T)$, $n=1, 2, \dots$, of all functions of the $n$th Baire class on a metric space $T$.
Classification :
26A99, 46A40, 46B30, 46B40, 46E05
Keywords: Dedekind completeness; spaces of continuous functions; spaces of Baire functions
Keywords: Dedekind completeness; spaces of continuous functions; spaces of Baire functions
@article{CMUC_1999_40_2_a8,
author = {W\'ojtowicz, Marek},
title = {A short proof on lifting of projection properties in {Riesz} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {277--278},
year = {1999},
volume = {40},
number = {2},
mrnumber = {1732648},
zbl = {0983.46006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_2_a8/}
}
Wójtowicz, Marek. A short proof on lifting of projection properties in Riesz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 277-278. http://geodesic.mathdoc.fr/item/CMUC_1999_40_2_a8/