An independency result in connectification theory
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 331-334
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let $\psi$ be the following statement: ``a perfect $T_3$-space $X$ with no more than $2^{\frak c}$ clopen subsets is connectifiable if and only if no proper nonempty clopen subset of $X$ is feebly compact". In this note we show that neither $\psi$ nor $\neg \psi$ is provable in ZFC.
A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let $\psi$ be the following statement: ``a perfect $T_3$-space $X$ with no more than $2^{\frak c}$ clopen subsets is connectifiable if and only if no proper nonempty clopen subset of $X$ is feebly compact". In this note we show that neither $\psi$ nor $\neg \psi$ is provable in ZFC.
Classification :
03E35, 54A35, 54C25, 54D05, 54D25
Keywords: connectifiable; perfect; feebly compact
Keywords: connectifiable; perfect; feebly compact
@article{CMUC_1999_40_2_a14,
author = {Fedeli, Alessandro and Le Donne, Attilio},
title = {An independency result in connectification theory},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {331--334},
year = {1999},
volume = {40},
number = {2},
mrnumber = {1732654},
zbl = {0976.54018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_2_a14/}
}
TY - JOUR AU - Fedeli, Alessandro AU - Le Donne, Attilio TI - An independency result in connectification theory JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 331 EP - 334 VL - 40 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1999_40_2_a14/ LA - en ID - CMUC_1999_40_2_a14 ER -
Fedeli, Alessandro; Le Donne, Attilio. An independency result in connectification theory. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 331-334. http://geodesic.mathdoc.fr/item/CMUC_1999_40_2_a14/