Kuratowski convergence on compacta and Hausdorff metric convergence on compacta
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 309-318
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
This paper completes and improves results of [10]. Let $(X,d_{_X})$, $(Y,d_{_Y})$ be two metric spaces and $G$ be the space of all $Y$-valued continuous functions whose domain is a closed subset of $X$. If $X$ is a locally compact metric space, then the Kuratowski convergence $\tau_{_K}$ and the Kuratowski convergence on compacta $\tau_{_K}^c$ coincide on $G$. Thus if $X$ and $Y$ are boundedly compact metric spaces we have the equivalence of the convergence in the Attouch-Wets topology $\tau_{_{AW}}$ (generated by the box metric of $d_{_X}$ and $d_{_Y}$) and $\tau_{_K}^c$ convergence on $G$, which improves the main result of [10]. In the second part of paper we extend the definition of Hausdorff metric convergence on compacta for general metric spaces $X$ and $Y$ and we show that if $X$ is locally compact metric space, then also $\tau$-convergence and Hausdorff metric convergence on compacta coincide in $G$.
This paper completes and improves results of [10]. Let $(X,d_{_X})$, $(Y,d_{_Y})$ be two metric spaces and $G$ be the space of all $Y$-valued continuous functions whose domain is a closed subset of $X$. If $X$ is a locally compact metric space, then the Kuratowski convergence $\tau_{_K}$ and the Kuratowski convergence on compacta $\tau_{_K}^c$ coincide on $G$. Thus if $X$ and $Y$ are boundedly compact metric spaces we have the equivalence of the convergence in the Attouch-Wets topology $\tau_{_{AW}}$ (generated by the box metric of $d_{_X}$ and $d_{_Y}$) and $\tau_{_K}^c$ convergence on $G$, which improves the main result of [10]. In the second part of paper we extend the definition of Hausdorff metric convergence on compacta for general metric spaces $X$ and $Y$ and we show that if $X$ is locally compact metric space, then also $\tau$-convergence and Hausdorff metric convergence on compacta coincide in $G$.
Classification :
54A20, 54B20, 54C35
Keywords: Kuratowski convergence; Attouch-Wets convergence; $\tau$-convergence; Kuratowski convergence on compacta and Hausdorff metric convergence on compacta
Keywords: Kuratowski convergence; Attouch-Wets convergence; $\tau$-convergence; Kuratowski convergence on compacta and Hausdorff metric convergence on compacta
@article{CMUC_1999_40_2_a11,
author = {Brandi, P. and Ceppitelli, R. and Hol\'a, \v{L}.},
title = {Kuratowski convergence on compacta and {Hausdorff} metric convergence on compacta},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {309--318},
year = {1999},
volume = {40},
number = {2},
mrnumber = {1732651},
zbl = {0976.54010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_2_a11/}
}
TY - JOUR AU - Brandi, P. AU - Ceppitelli, R. AU - Holá, Ľ. TI - Kuratowski convergence on compacta and Hausdorff metric convergence on compacta JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 309 EP - 318 VL - 40 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1999_40_2_a11/ LA - en ID - CMUC_1999_40_2_a11 ER -
%0 Journal Article %A Brandi, P. %A Ceppitelli, R. %A Holá, Ľ. %T Kuratowski convergence on compacta and Hausdorff metric convergence on compacta %J Commentationes Mathematicae Universitatis Carolinae %D 1999 %P 309-318 %V 40 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_1999_40_2_a11/ %G en %F CMUC_1999_40_2_a11
Brandi, P.; Ceppitelli, R.; Holá, Ľ. Kuratowski convergence on compacta and Hausdorff metric convergence on compacta. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 309-318. http://geodesic.mathdoc.fr/item/CMUC_1999_40_2_a11/