On Asplund functions
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 121-132 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map.
A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map.
Classification : 46B03, 46B20, 46G99, 58C20
Keywords: Fréchet differentiability; convex functions; Asplund spaces
@article{CMUC_1999_40_1_a8,
     author = {Tang, Wee-Kee},
     title = {On {Asplund} functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {121--132},
     year = {1999},
     volume = {40},
     number = {1},
     mrnumber = {1715206},
     zbl = {1060.46505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a8/}
}
TY  - JOUR
AU  - Tang, Wee-Kee
TI  - On Asplund functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 121
EP  - 132
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a8/
LA  - en
ID  - CMUC_1999_40_1_a8
ER  - 
%0 Journal Article
%A Tang, Wee-Kee
%T On Asplund functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 121-132
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a8/
%G en
%F CMUC_1999_40_1_a8
Tang, Wee-Kee. On Asplund functions. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 121-132. http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a8/