On infinite dimensional uniform smoothness of Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 97-105 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An infinite dimensional counterpart of uniform smoothness is studied. It does not imply reflexivity, but we prove that it gives some $l_p$-type estimates for finite dimensional decompositions, weak Banach-Saks property and the weak fixed point property.
An infinite dimensional counterpart of uniform smoothness is studied. It does not imply reflexivity, but we prove that it gives some $l_p$-type estimates for finite dimensional decompositions, weak Banach-Saks property and the weak fixed point property.
Classification : 46B20, 47H10
Keywords: Banach space; nearly uniform smoothness; finite dimensional decomposition; Banach-Saks property; fixed point property
@article{CMUC_1999_40_1_a6,
     author = {Prus, Stanis{\l}aw},
     title = {On infinite dimensional uniform smoothness of {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {97--105},
     year = {1999},
     volume = {40},
     number = {1},
     mrnumber = {1715204},
     zbl = {1060.46504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a6/}
}
TY  - JOUR
AU  - Prus, Stanisław
TI  - On infinite dimensional uniform smoothness of Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 97
EP  - 105
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a6/
LA  - en
ID  - CMUC_1999_40_1_a6
ER  - 
%0 Journal Article
%A Prus, Stanisław
%T On infinite dimensional uniform smoothness of Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 97-105
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a6/
%G en
%F CMUC_1999_40_1_a6
Prus, Stanisław. On infinite dimensional uniform smoothness of Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a6/