On infinite dimensional uniform smoothness of Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 97-105
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
An infinite dimensional counterpart of uniform smoothness is studied. It does not imply reflexivity, but we prove that it gives some $l_p$-type estimates for finite dimensional decompositions, weak Banach-Saks property and the weak fixed point property.
An infinite dimensional counterpart of uniform smoothness is studied. It does not imply reflexivity, but we prove that it gives some $l_p$-type estimates for finite dimensional decompositions, weak Banach-Saks property and the weak fixed point property.
Classification :
46B20, 47H10
Keywords: Banach space; nearly uniform smoothness; finite dimensional decomposition; Banach-Saks property; fixed point property
Keywords: Banach space; nearly uniform smoothness; finite dimensional decomposition; Banach-Saks property; fixed point property
@article{CMUC_1999_40_1_a6,
author = {Prus, Stanis{\l}aw},
title = {On infinite dimensional uniform smoothness of {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {97--105},
year = {1999},
volume = {40},
number = {1},
mrnumber = {1715204},
zbl = {1060.46504},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a6/}
}
Prus, Stanisław. On infinite dimensional uniform smoothness of Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a6/