On generalized games in $H$-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 175-180 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that a recent existence result for the Nash equilibria of generalized games with strategy sets in $H$-spaces is false. We prove that it becomes true if we assume, in addition, that the feasible set of the game (the set of all feasible multistrategies) is closed.
We show that a recent existence result for the Nash equilibria of generalized games with strategy sets in $H$-spaces is false. We prove that it becomes true if we assume, in addition, that the feasible set of the game (the set of all feasible multistrategies) is closed.
Classification : 54H99, 90D06, 90D10, 91A40, 91A44
Keywords: $H$-spaces; generalized games; Nash equilibria; $H$-convexity; open lower sections; fixed points
@article{CMUC_1999_40_1_a12,
     author = {Cubiotti, Paolo and Nordo, Giorgio},
     title = {On generalized games in $H$-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {175--180},
     year = {1999},
     volume = {40},
     number = {1},
     mrnumber = {1715210},
     zbl = {1059.91502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a12/}
}
TY  - JOUR
AU  - Cubiotti, Paolo
AU  - Nordo, Giorgio
TI  - On generalized games in $H$-spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 175
EP  - 180
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a12/
LA  - en
ID  - CMUC_1999_40_1_a12
ER  - 
%0 Journal Article
%A Cubiotti, Paolo
%A Nordo, Giorgio
%T On generalized games in $H$-spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 175-180
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a12/
%G en
%F CMUC_1999_40_1_a12
Cubiotti, Paolo; Nordo, Giorgio. On generalized games in $H$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 175-180. http://geodesic.mathdoc.fr/item/CMUC_1999_40_1_a12/