Gehring theory for time-discrete hyperbolic differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 697-707
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
This paper is concerned with extending Gehring theory to be applicable to Rothe's approximate solutions to hyperbolic differential equations.
This paper is concerned with extending Gehring theory to be applicable to Rothe's approximate solutions to hyperbolic differential equations.
Classification :
26D15, 35L20, 35L90, 39A10, 49J40
Keywords: Gehring theory; Rothe's approximation; hyperbolic differential equations
Keywords: Gehring theory; Rothe's approximation; hyperbolic differential equations
@article{CMUC_1998_39_4_a5,
author = {Hoshino, K. and Kikuchi, N.},
title = {Gehring theory for time-discrete hyperbolic differential equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {697--707},
year = {1998},
volume = {39},
number = {4},
mrnumber = {1715459},
zbl = {1060.35527},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_4_a5/}
}
TY - JOUR AU - Hoshino, K. AU - Kikuchi, N. TI - Gehring theory for time-discrete hyperbolic differential equations JO - Commentationes Mathematicae Universitatis Carolinae PY - 1998 SP - 697 EP - 707 VL - 39 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1998_39_4_a5/ LA - en ID - CMUC_1998_39_4_a5 ER -
Hoshino, K.; Kikuchi, N. Gehring theory for time-discrete hyperbolic differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 697-707. http://geodesic.mathdoc.fr/item/CMUC_1998_39_4_a5/