On Besov spaces and absolute convergence of the Fourier transform on Heisenberg groups
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 755-763
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper the absolute convergence of the group Fourier transform for the Heisenberg group is investigated. It is proved that the Fourier transform of functions belonging to certain Besov spaces is absolutely convergent. The function spaces are defined in terms of the heat semigroup of the full Laplacian of the Heisenberg group.
In this paper the absolute convergence of the group Fourier transform for the Heisenberg group is investigated. It is proved that the Fourier transform of functions belonging to certain Besov spaces is absolutely convergent. The function spaces are defined in terms of the heat semigroup of the full Laplacian of the Heisenberg group.
Classification :
22E25, 43A30, 43A80, 46E35
Keywords: Besov spaces; Heisenberg groups; group Fourier transform
Keywords: Besov spaces; Heisenberg groups; group Fourier transform
@article{CMUC_1998_39_4_a10,
author = {Skrzypczak, Leszek},
title = {On {Besov} spaces and absolute convergence of the {Fourier} transform on {Heisenberg} groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {755--763},
year = {1998},
volume = {39},
number = {4},
mrnumber = {1715464},
zbl = {1060.46512},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_4_a10/}
}
TY - JOUR AU - Skrzypczak, Leszek TI - On Besov spaces and absolute convergence of the Fourier transform on Heisenberg groups JO - Commentationes Mathematicae Universitatis Carolinae PY - 1998 SP - 755 EP - 763 VL - 39 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1998_39_4_a10/ LA - en ID - CMUC_1998_39_4_a10 ER -
Skrzypczak, Leszek. On Besov spaces and absolute convergence of the Fourier transform on Heisenberg groups. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 755-763. http://geodesic.mathdoc.fr/item/CMUC_1998_39_4_a10/