Convex functions with non-Borel set of Gâteaux differentiability points
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 3, pp. 469-482
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that on every nonseparable Banach space which has a fundamental system (e.g\. on every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function $f$ such that the set of its G\^ateaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function $f$ on $\ell^1(\frak c)$.
We show that on every nonseparable Banach space which has a fundamental system (e.g\. on every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function $f$ such that the set of its G\^ateaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function $f$ on $\ell^1(\frak c)$.
Classification :
46B20, 46B26, 46G05
Keywords: convex function; G\^ateaux differentiability points; Borel set; fundamental system
Keywords: convex function; G\^ateaux differentiability points; Borel set; fundamental system
@article{CMUC_1998_39_3_a3,
author = {Holick\'y, P. and \v{S}m{\'\i}dek, M. and Zaj{\'\i}\v{c}ek, L.},
title = {Convex functions with {non-Borel} set of {G\^ateaux} differentiability points},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {469--482},
year = {1998},
volume = {39},
number = {3},
mrnumber = {1666778},
zbl = {0970.46026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_3_a3/}
}
TY - JOUR AU - Holický, P. AU - Šmídek, M. AU - Zajíček, L. TI - Convex functions with non-Borel set of Gâteaux differentiability points JO - Commentationes Mathematicae Universitatis Carolinae PY - 1998 SP - 469 EP - 482 VL - 39 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1998_39_3_a3/ LA - en ID - CMUC_1998_39_3_a3 ER -
%0 Journal Article %A Holický, P. %A Šmídek, M. %A Zajíček, L. %T Convex functions with non-Borel set of Gâteaux differentiability points %J Commentationes Mathematicae Universitatis Carolinae %D 1998 %P 469-482 %V 39 %N 3 %U http://geodesic.mathdoc.fr/item/CMUC_1998_39_3_a3/ %G en %F CMUC_1998_39_3_a3
Holický, P.; Šmídek, M.; Zajíček, L. Convex functions with non-Borel set of Gâteaux differentiability points. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 3, pp. 469-482. http://geodesic.mathdoc.fr/item/CMUC_1998_39_3_a3/