Metric-fine uniform frames
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 3, pp. 617-632
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A locallic version of Hager's metric-fine spaces is presented. A general definition of $\Cal A$-fineness is given and various special cases are considered, notably $\Cal A =$ all metric frames, $\Cal A =$ complete metric frames. Their interactions with each other, quotients, separability, completion and other topological properties are discussed.
A locallic version of Hager's metric-fine spaces is presented. A general definition of $\Cal A$-fineness is given and various special cases are considered, notably $\Cal A =$ all metric frames, $\Cal A =$ complete metric frames. Their interactions with each other, quotients, separability, completion and other topological properties are discussed.
Classification :
06A23, 06B99, 54A05, 54D20, 54D30, 54E15
Keywords: uniform frames and sigma frames; fine; metric-fine; completion
Keywords: uniform frames and sigma frames; fine; metric-fine; completion
@article{CMUC_1998_39_3_a16,
author = {Walters-Wayland, J. L.},
title = {Metric-fine uniform frames},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {617--632},
year = {1998},
volume = {39},
number = {3},
mrnumber = {1666802},
zbl = {0962.54021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_3_a16/}
}
Walters-Wayland, J. L. Metric-fine uniform frames. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 3, pp. 617-632. http://geodesic.mathdoc.fr/item/CMUC_1998_39_3_a16/