Function spaces have essential sets
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 2, pp. 337-340 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well known that any function algebra has an essential set. In this note we define an essential set for an arbitrary function space (not necessarily algebra) and prove that any function space has an essential set.
It is well known that any function algebra has an essential set. In this note we define an essential set for an arbitrary function space (not necessarily algebra) and prove that any function space has an essential set.
Classification : 46E15, 46E35, 46J10
Keywords: compact Hausdorff space $X$; the sup-norm algebra $C(X)$ of all complex-valued continuous functions on $X$; its closed subalgebras (called function algebras); its closed subspaces (called function spaces); measure orthogonal to a function algebra or to a function space
@article{CMUC_1998_39_2_a9,
     author = {\v{C}erych, Jan},
     title = {Function spaces have essential sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {337--340},
     year = {1998},
     volume = {39},
     number = {2},
     mrnumber = {1651963},
     zbl = {0937.46048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_2_a9/}
}
TY  - JOUR
AU  - Čerych, Jan
TI  - Function spaces have essential sets
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 337
EP  - 340
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998_39_2_a9/
LA  - en
ID  - CMUC_1998_39_2_a9
ER  - 
%0 Journal Article
%A Čerych, Jan
%T Function spaces have essential sets
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 337-340
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1998_39_2_a9/
%G en
%F CMUC_1998_39_2_a9
Čerych, Jan. Function spaces have essential sets. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 2, pp. 337-340. http://geodesic.mathdoc.fr/item/CMUC_1998_39_2_a9/