Around splitting and reaping
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 2, pp. 269-279
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove several results on some cardinal invariants of the continuum which are closely related to either the splitting number $\mathfrak s$ or its dual, the reaping number $\mathfrak r$.
We prove several results on some cardinal invariants of the continuum which are closely related to either the splitting number $\mathfrak s$ or its dual, the reaping number $\mathfrak r$.
Classification :
03E05, 03E17, 03E35
Keywords: cardinal invariants of the continuum; splitting number; open splitting number; reaping number; $\sigma$-reaping number; Cicho'n's diagram; Hechler forcing; finite support iteration
Keywords: cardinal invariants of the continuum; splitting number; open splitting number; reaping number; $\sigma$-reaping number; Cicho'n's diagram; Hechler forcing; finite support iteration
@article{CMUC_1998_39_2_a4,
author = {Brendle, J\"org},
title = {Around splitting and reaping},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {269--279},
year = {1998},
volume = {39},
number = {2},
mrnumber = {1651946},
zbl = {0939.03048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_2_a4/}
}
Brendle, Jörg. Around splitting and reaping. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 2, pp. 269-279. http://geodesic.mathdoc.fr/item/CMUC_1998_39_2_a4/