$\omega$H-sets and cardinal invariants
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 2, pp. 367-370
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A subset $A$ of a Hausdorff space $X$ is called an $\omega$H-set in $X$ if for every open family $\Cal U$ in $X$ such that $A \subset \bigcup \Cal U$ there exists a countable subfamily $\Cal V$ of $\Cal U$ such that $A \subset \bigcup \{ \overline{V} : V \in \Cal V \}$. In this paper we introduce a new cardinal function $t_{s\theta}$ and show that $|A| \leq 2^{t_{s\theta}(X)\psi_{c}(X)}$ for every $\omega$H-set $A$ of a Hausdorff space $X$.
A subset $A$ of a Hausdorff space $X$ is called an $\omega$H-set in $X$ if for every open family $\Cal U$ in $X$ such that $A \subset \bigcup \Cal U$ there exists a countable subfamily $\Cal V$ of $\Cal U$ such that $A \subset \bigcup \{ \overline{V} : V \in \Cal V \}$. In this paper we introduce a new cardinal function $t_{s\theta}$ and show that $|A| \leq 2^{t_{s\theta}(X)\psi_{c}(X)}$ for every $\omega$H-set $A$ of a Hausdorff space $X$.
@article{CMUC_1998_39_2_a12,
author = {Fedeli, Alessandro},
title = {$\omega${H-sets} and cardinal invariants},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {367--370},
year = {1998},
volume = {39},
number = {2},
mrnumber = {1651975},
zbl = {0937.54004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_2_a12/}
}
Fedeli, Alessandro. $\omega$H-sets and cardinal invariants. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 2, pp. 367-370. http://geodesic.mathdoc.fr/item/CMUC_1998_39_2_a12/