The Banach-Saks property and Haar null sets
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 71-80
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space $X$ has the Banach-Saks property, then closed and convex subsets of $X$ with empty interior are Haar null.
A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space $X$ has the Banach-Saks property, then closed and convex subsets of $X$ with empty interior are Haar null.
@article{CMUC_1998_39_1_a7,
author = {Matou\v{s}kov\'a, Eva},
title = {The {Banach-Saks} property and {Haar} null sets},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {71--80},
year = {1998},
volume = {39},
number = {1},
mrnumber = {1622974},
zbl = {0937.46011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a7/}
}
Matoušková, Eva. The Banach-Saks property and Haar null sets. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a7/