Decaying positive solutions of some quasilinear differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 39-47
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The existence of decaying positive solutions in ${\Bbb R}_+$ of the equations $(E_\lambda )$ and $(E_\lambda^1)$ displayed below is considered. From the existence of such solutions for the subhomogeneous cases (i.e. $t^{1-p} F(r,tU,t|U'|) \searrow 0$ as $t \nearrow \infty $), a super-sub-solutions method (see \S\,2.2) enables us to obtain existence theorems for more general cases.
The existence of decaying positive solutions in ${\Bbb R}_+$ of the equations $(E_\lambda )$ and $(E_\lambda^1)$ displayed below is considered. From the existence of such solutions for the subhomogeneous cases (i.e. $t^{1-p} F(r,tU,t|U'|) \searrow 0$ as $t \nearrow \infty $), a super-sub-solutions method (see \S\,2.2) enables us to obtain existence theorems for more general cases.
Classification :
34B15, 34C10, 34C99, 35B05, 35J60, 35J65, 35J70
Keywords: quasilinear elliptic; integral operators; fixed points theory
Keywords: quasilinear elliptic; integral operators; fixed points theory
@article{CMUC_1998_39_1_a3,
author = {Tadie},
title = {Decaying positive solutions of some quasilinear differential equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {39--47},
year = {1998},
volume = {39},
number = {1},
mrnumber = {1622320},
zbl = {0944.34005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a3/}
}
Tadie. Decaying positive solutions of some quasilinear differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 39-47. http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a3/