An elementary proof of a theorem on sublattices of finite codimension
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 99-100 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper presents an elementary proof and a generalization of a theorem due to Abramovich and Lipecki, concerning the nonexistence of closed linear sublattices of finite codimension in nonatomic locally solid linear lattices with the Lebesgue property.
This paper presents an elementary proof and a generalization of a theorem due to Abramovich and Lipecki, concerning the nonexistence of closed linear sublattices of finite codimension in nonatomic locally solid linear lattices with the Lebesgue property.
Classification : 46A40, 47B65
Keywords: linear lattice; Lebesgue property; lattice homomorphism
@article{CMUC_1998_39_1_a10,
     author = {W\'ojtowicz, Marek},
     title = {An elementary proof of a theorem on sublattices of finite codimension},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {99--100},
     year = {1998},
     volume = {39},
     number = {1},
     mrnumber = {1622986},
     zbl = {0937.46002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a10/}
}
TY  - JOUR
AU  - Wójtowicz, Marek
TI  - An elementary proof of a theorem on sublattices of finite codimension
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 99
EP  - 100
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a10/
LA  - en
ID  - CMUC_1998_39_1_a10
ER  - 
%0 Journal Article
%A Wójtowicz, Marek
%T An elementary proof of a theorem on sublattices of finite codimension
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 99-100
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a10/
%G en
%F CMUC_1998_39_1_a10
Wójtowicz, Marek. An elementary proof of a theorem on sublattices of finite codimension. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 99-100. http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a10/