The Re-nonnegative definite solutions to the matrix equation $AXB=C$
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 7-13
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
An $n\times n$ complex matrix $A$ is called Re-nonnegative definite (Re-nnd) if the real part of $x^{\ast } Ax$ is nonnegative for every complex $n$-vector $x$. In this paper criteria for a partitioned matrix to be Re-nnd are given. A necessary and sufficient condition for the existence of and an expression for the Re-nnd solutions of the matrix equation $AXB=C$ are presented.
An $n\times n$ complex matrix $A$ is called Re-nonnegative definite (Re-nnd) if the real part of $x^{\ast } Ax$ is nonnegative for every complex $n$-vector $x$. In this paper criteria for a partitioned matrix to be Re-nnd are given. A necessary and sufficient condition for the existence of and an expression for the Re-nnd solutions of the matrix equation $AXB=C$ are presented.
Classification :
15A24, 15A57
Keywords: Re-nonnegative define matrix; matrix equation; generalized singular value decomposition
Keywords: Re-nonnegative define matrix; matrix equation; generalized singular value decomposition
@article{CMUC_1998_39_1_a1,
author = {Wang, Qingwen and Yang, Changlan},
title = {The {Re-nonnegative} definite solutions to the matrix equation $AXB=C$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {7--13},
year = {1998},
volume = {39},
number = {1},
mrnumber = {1622312},
zbl = {0937.15008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a1/}
}
TY - JOUR AU - Wang, Qingwen AU - Yang, Changlan TI - The Re-nonnegative definite solutions to the matrix equation $AXB=C$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 1998 SP - 7 EP - 13 VL - 39 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a1/ LA - en ID - CMUC_1998_39_1_a1 ER -
Wang, Qingwen; Yang, Changlan. The Re-nonnegative definite solutions to the matrix equation $AXB=C$. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 7-13. http://geodesic.mathdoc.fr/item/CMUC_1998_39_1_a1/