Localic Katětov-Tong insertion theorem and localic Tietze extension theorem
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 801-814
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, localic upper, respectively lower continuous chains over a locale are defined. A localic Katětov-Tong insertion theorem is given and proved in terms of a localic upper and lower continuous chain. Finally, the localic Urysohn lemma and the localic Tietze extension theorem are shown as applications of the localic insertion theorem.
In this paper, localic upper, respectively lower continuous chains over a locale are defined. A localic Katětov-Tong insertion theorem is given and proved in terms of a localic upper and lower continuous chain. Finally, the localic Urysohn lemma and the localic Tietze extension theorem are shown as applications of the localic insertion theorem.
Classification :
06D20, 06D22, 18B30, 54C20, 54C30
Keywords: frame; locale; lower (upper) continuous chain; normal locale
Keywords: frame; locale; lower (upper) continuous chain; normal locale
@article{CMUC_1997_38_4_a14,
author = {Li, Yong Min and Guo-jun, Wang},
title = {Localic {Kat\v{e}tov-Tong} insertion theorem and localic {Tietze} extension theorem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {801--814},
year = {1997},
volume = {38},
number = {4},
mrnumber = {1603726},
zbl = {0938.06008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997_38_4_a14/}
}
TY - JOUR AU - Li, Yong Min AU - Guo-jun, Wang TI - Localic Katětov-Tong insertion theorem and localic Tietze extension theorem JO - Commentationes Mathematicae Universitatis Carolinae PY - 1997 SP - 801 EP - 814 VL - 38 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1997_38_4_a14/ LA - en ID - CMUC_1997_38_4_a14 ER -
Li, Yong Min; Guo-jun, Wang. Localic Katětov-Tong insertion theorem and localic Tietze extension theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 801-814. http://geodesic.mathdoc.fr/item/CMUC_1997_38_4_a14/