A two-weight inequality for the Bessel potential operator
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 3, pp. 497-511
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Necessary conditions and sufficient conditions are derived in order that \linebreak Bessel potential operator $J_{s,\lambda }$ is bounded from the weighted Lebesgue spaces $L_{v}^{p}=L^{p}(\Bbb R^n,v(x)dx)$ into $L_{u}^{q}$ when $1$.
Necessary conditions and sufficient conditions are derived in order that \linebreak Bessel potential operator $J_{s,\lambda }$ is bounded from the weighted Lebesgue spaces $L_{v}^{p}=L^{p}(\Bbb R^n,v(x)dx)$ into $L_{u}^{q}$ when $1$.
Classification :
26D10, 42B20, 42B25, 46E35, 47B38
Keywords: weighted inequalities; Bessel potential operators; Riesz potential operators
Keywords: weighted inequalities; Bessel potential operators; Riesz potential operators
@article{CMUC_1997_38_3_a6,
author = {Rakotondratsimba, Y.},
title = {A two-weight inequality for the {Bessel} potential operator},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {497--511},
year = {1997},
volume = {38},
number = {3},
mrnumber = {1485071},
zbl = {0941.42007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997_38_3_a6/}
}
Rakotondratsimba, Y. A two-weight inequality for the Bessel potential operator. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 3, pp. 497-511. http://geodesic.mathdoc.fr/item/CMUC_1997_38_3_a6/