How restrictive is topological dynamics?
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 3, pp. 563-569
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $T$ be a permutation of an abstract set $X$. In ZFC, we find a necessary and sufficient condition it terms of cardinalities of the $T$-orbits that allows us to topologize $(X,T)$ as a topological dynamical system on a compact Hausdorff space. This extends an early result of H. de Vries concerning compact metric dynamical systems. An analogous result is obtained for ${\bold Z}^2$-actions without periodic points.
Let $T$ be a permutation of an abstract set $X$. In ZFC, we find a necessary and sufficient condition it terms of cardinalities of the $T$-orbits that allows us to topologize $(X,T)$ as a topological dynamical system on a compact Hausdorff space. This extends an early result of H. de Vries concerning compact metric dynamical systems. An analogous result is obtained for ${\bold Z}^2$-actions without periodic points.
Classification :
54H20
Keywords: abstract dynamical system; pointwise periodic system; symbolic dynamics; $\bold Z^2$-action
Keywords: abstract dynamical system; pointwise periodic system; symbolic dynamics; $\bold Z^2$-action
@article{CMUC_1997_38_3_a12,
author = {Iwanik, A.},
title = {How restrictive is topological dynamics?},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {563--569},
year = {1997},
volume = {38},
number = {3},
mrnumber = {1485077},
zbl = {0938.54036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997_38_3_a12/}
}
Iwanik, A. How restrictive is topological dynamics?. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 3, pp. 563-569. http://geodesic.mathdoc.fr/item/CMUC_1997_38_3_a12/