Periodic solutions for nonlinear Volterra integrodifferential equations in Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 283-296 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we examine periodic integrodifferential equations in Banach spaces. When the cone is regular, we prove two existence theorems for the extremal solutions in the order interval determined by an upper and a lower solution. Both theorems use only the order structure of the problem and no compactness condition is assumed. In the last section we ask the cone to be only normal but we impose a compactness condition using the ball measure of noncompactness. We obtain the extremal solutions for both the Cauchy and periodic problems in a constructive way, using a monotone iterative technique.
In this paper we examine periodic integrodifferential equations in Banach spaces. When the cone is regular, we prove two existence theorems for the extremal solutions in the order interval determined by an upper and a lower solution. Both theorems use only the order structure of the problem and no compactness condition is assumed. In the last section we ask the cone to be only normal but we impose a compactness condition using the ball measure of noncompactness. We obtain the extremal solutions for both the Cauchy and periodic problems in a constructive way, using a monotone iterative technique.
Classification : 34K30, 45G10, 45J05, 45L05, 45N05, 47H17, 47N20
Keywords: extremal solutions; monotone map; regular cone; normal cone; quasi-monotone map; reproducing cone; dual cone; differential inequality; monotone iterative technique
@article{CMUC_1997_38_2_a9,
     author = {Kandilakis, Dimitrios A. and Papageorgiou, Nikolaos S.},
     title = {Periodic solutions for nonlinear {Volterra} integrodifferential equations in {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {283--296},
     year = {1997},
     volume = {38},
     number = {2},
     mrnumber = {1455496},
     zbl = {0891.45010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997_38_2_a9/}
}
TY  - JOUR
AU  - Kandilakis, Dimitrios A.
AU  - Papageorgiou, Nikolaos S.
TI  - Periodic solutions for nonlinear Volterra integrodifferential equations in Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 283
EP  - 296
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997_38_2_a9/
LA  - en
ID  - CMUC_1997_38_2_a9
ER  - 
%0 Journal Article
%A Kandilakis, Dimitrios A.
%A Papageorgiou, Nikolaos S.
%T Periodic solutions for nonlinear Volterra integrodifferential equations in Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 283-296
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1997_38_2_a9/
%G en
%F CMUC_1997_38_2_a9
Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S. Periodic solutions for nonlinear Volterra integrodifferential equations in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 283-296. http://geodesic.mathdoc.fr/item/CMUC_1997_38_2_a9/