A note on lattice renormings
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 263-272
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It is shown that every strongly lattice norm on $c_0(\Gamma)$ can be approximated by $C^\infty$ smooth norms. We also show that there is no lattice and G\^ateaux differentiable norm on $C_0[0,\omega_1]$.
It is shown that every strongly lattice norm on $c_0(\Gamma)$ can be approximated by $C^\infty$ smooth norms. We also show that there is no lattice and G\^ateaux differentiable norm on $C_0[0,\omega_1]$.
Classification :
46B03, 46B20, 46B26
Keywords: smooth norms; approximation; lattice norms; $c_0(\Gamma)$; $C_0[0, \omega_1]$
Keywords: smooth norms; approximation; lattice norms; $c_0(\Gamma)$; $C_0[0, \omega_1]$
@article{CMUC_1997_38_2_a6,
author = {Fabian, Mari\'an and H\'ajek, Petr and Zizler, V\'aclav},
title = {A note on lattice renormings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {263--272},
year = {1997},
volume = {38},
number = {2},
mrnumber = {1455493},
zbl = {0886.46006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997_38_2_a6/}
}
Fabian, Marián; Hájek, Petr; Zizler, Václav. A note on lattice renormings. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 263-272. http://geodesic.mathdoc.fr/item/CMUC_1997_38_2_a6/