Centralizers on prime and semiprime rings
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 231-240
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let $R$ be a noncommutative prime ring of characteristic different from two and let $S$ and $T$ be left centralizers on $R$. Suppose that $[S(x),T(x)]S(x)+S(x)[S(x),T(x)]=0$ is fulfilled for all $x\in R$. If $S\neq 0$ $(T\neq 0)$ then there exists $\lambda $ from the extended centroid of $R$ such that $T=\lambda S$ $(S=\lambda T)$.
The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let $R$ be a noncommutative prime ring of characteristic different from two and let $S$ and $T$ be left centralizers on $R$. Suppose that $[S(x),T(x)]S(x)+S(x)[S(x),T(x)]=0$ is fulfilled for all $x\in R$. If $S\neq 0$ $(T\neq 0)$ then there exists $\lambda $ from the extended centroid of $R$ such that $T=\lambda S$ $(S=\lambda T)$.
Classification :
16A12, 16A68, 16A72, 16N60, 16U70, 16W10, 16W25
Keywords: prime ring; semiprime ring; extended centroid; derivation; Jordan derivation; left (right) centralizer; Jordan left (right) centralizer; commuting mapping; centralizing mapping
Keywords: prime ring; semiprime ring; extended centroid; derivation; Jordan derivation; left (right) centralizer; Jordan left (right) centralizer; commuting mapping; centralizing mapping
@article{CMUC_1997_38_2_a2,
author = {Vukman, Joso},
title = {Centralizers on prime and semiprime rings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {231--240},
year = {1997},
volume = {38},
number = {2},
mrnumber = {1455489},
zbl = {0889.16016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997_38_2_a2/}
}
Vukman, Joso. Centralizers on prime and semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 231-240. http://geodesic.mathdoc.fr/item/CMUC_1997_38_2_a2/