Metrizable completely distributive lattices
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 1, pp. 137-148 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The purpose of this paper is to study the topological properties of the interval topology on a completely distributive lattice. The main result is that a metrizable completely distributive lattice is an ANR if and only if it contains at most finite completely compact elements.
The purpose of this paper is to study the topological properties of the interval topology on a completely distributive lattice. The main result is that a metrizable completely distributive lattice is an ANR if and only if it contains at most finite completely compact elements.
Classification : 06B30, 06B35, 06D10, 54C08, 54C15, 54C55, 54E35, 54H12
Keywords: completely distributive lattice; interval topology; AR; ANR
@article{CMUC_1997_38_1_a11,
     author = {De-Xue, Zhang},
     title = {Metrizable completely distributive lattices},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {137--148},
     year = {1997},
     volume = {38},
     number = {1},
     mrnumber = {1455477},
     zbl = {0887.06006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997_38_1_a11/}
}
TY  - JOUR
AU  - De-Xue, Zhang
TI  - Metrizable completely distributive lattices
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 137
EP  - 148
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997_38_1_a11/
LA  - en
ID  - CMUC_1997_38_1_a11
ER  - 
%0 Journal Article
%A De-Xue, Zhang
%T Metrizable completely distributive lattices
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 137-148
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1997_38_1_a11/
%G en
%F CMUC_1997_38_1_a11
De-Xue, Zhang. Metrizable completely distributive lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 1, pp. 137-148. http://geodesic.mathdoc.fr/item/CMUC_1997_38_1_a11/