On concentrated probabilities on non locally compact groups
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 635-640
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $G$ be a Polish group with an invariant metric. We characterize those probability measures $\mu$ on $G$ so that there exist a sequence $g_n \in G$ and a compact set $A \subseteq G$ with \, ${\mu}^{*n} (g_n A) \equiv 1$ \, for all $n$.
Let $G$ be a Polish group with an invariant metric. We characterize those probability measures $\mu$ on $G$ so that there exist a sequence $g_n \in G$ and a compact set $A \subseteq G$ with \, ${\mu}^{*n} (g_n A) \equiv 1$ \, for all $n$.
Classification :
22D40, 43A05, 47A35, 60B15, 60J15
Keywords: concentration function; random walk; Markov operator; invariant measure
Keywords: concentration function; random walk; Markov operator; invariant measure
@article{CMUC_1996_37_3_a20,
author = {Bartoszek, Wojciech},
title = {On concentrated probabilities on non locally compact groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {635--640},
year = {1996},
volume = {37},
number = {3},
mrnumber = {1426928},
zbl = {0881.22001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996_37_3_a20/}
}
Bartoszek, Wojciech. On concentrated probabilities on non locally compact groups. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 635-640. http://geodesic.mathdoc.fr/item/CMUC_1996_37_3_a20/