Pseudocompactness and the cozero part of a frame
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 577-587
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A characterization of the cozero elements of a frame, without reference to the reals, is given and is used to obtain a characterization of pseudocompactness also independent of the reals. Applications are made to the congruence frame of a $\sigma$-frame and to Alexandroff spaces.
A characterization of the cozero elements of a frame, without reference to the reals, is given and is used to obtain a characterization of pseudocompactness also independent of the reals. Applications are made to the congruence frame of a $\sigma$-frame and to Alexandroff spaces.
Classification :
06B10, 54C50, 54D20
Keywords: pseudocompact frames; $\sigma$-frames; cozero elements and Alexandroff spaces
Keywords: pseudocompact frames; $\sigma$-frames; cozero elements and Alexandroff spaces
@article{CMUC_1996_37_3_a14,
author = {Banaschewski, Bernhard and Gilmour, Christopher},
title = {Pseudocompactness and the cozero part of a frame},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {577--587},
year = {1996},
volume = {37},
number = {3},
mrnumber = {1426922},
zbl = {0881.54018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996_37_3_a14/}
}
TY - JOUR AU - Banaschewski, Bernhard AU - Gilmour, Christopher TI - Pseudocompactness and the cozero part of a frame JO - Commentationes Mathematicae Universitatis Carolinae PY - 1996 SP - 577 EP - 587 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1996_37_3_a14/ LA - en ID - CMUC_1996_37_3_a14 ER -
Banaschewski, Bernhard; Gilmour, Christopher. Pseudocompactness and the cozero part of a frame. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 577-587. http://geodesic.mathdoc.fr/item/CMUC_1996_37_3_a14/