Nowhere dense subsets and Booth's Lemma
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 391-395
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The following statement is proved to be independent from $[\operatorname{LB}+\neg \operatorname{CH}]$: \linebreak $(*)$ Let $X$ be a Tychonoff space with $c(X)\leq \aleph _0$ and $\pi w(X)\frak C$. Then a union of less than $\frak C$ of nowhere dense subsets of $X$ is a union of not greater than $\pi w(X)$ of nowhere dense subsets.
The following statement is proved to be independent from $[\operatorname{LB}+\neg \operatorname{CH}]$: \linebreak $(*)$ Let $X$ be a Tychonoff space with $c(X)\leq \aleph _0$ and $\pi w(X)\frak C$. Then a union of less than $\frak C$ of nowhere dense subsets of $X$ is a union of not greater than $\pi w(X)$ of nowhere dense subsets.
Classification :
03E35, 03E50, 54A25, 54A35
Keywords: nowhere dense subset; Booth's Lemma; $\pi $-weight
Keywords: nowhere dense subset; Booth's Lemma; $\pi $-weight
@article{CMUC_1996_37_2_a15,
author = {Malykhin, V. I.},
title = {Nowhere dense subsets and {Booth's} {Lemma}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {391--395},
year = {1996},
volume = {37},
number = {2},
mrnumber = {1399011},
zbl = {0854.54005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996_37_2_a15/}
}
Malykhin, V. I. Nowhere dense subsets and Booth's Lemma. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 391-395. http://geodesic.mathdoc.fr/item/CMUC_1996_37_2_a15/