Differential equations at resonance
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 673-694
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
New existence results are presented for the two point singular ``resonant'' boundary value problem $\frac{1}{p}(py')'+r y+\lambda_m qy=f(t,y,py')$ a.e\. on $[0,1]$ with $y$ satisfying Sturm Liouville or Periodic boundary conditions. Here $\lambda_m$ is the $(m+1)^{st}$ eigenvalue of $\frac{1}{pq} [(pu')' +rpu] +\lambda u=0$ a.e\. on $[0,1]$ with $u$ satisfying Sturm Liouville or Periodic boundary data.
New existence results are presented for the two point singular ``resonant'' boundary value problem $\frac{1}{p}(py')'+r y+\lambda_m qy=f(t,y,py')$ a.e\. on $[0,1]$ with $y$ satisfying Sturm Liouville or Periodic boundary conditions. Here $\lambda_m$ is the $(m+1)^{st}$ eigenvalue of $\frac{1}{pq} [(pu')' +rpu] +\lambda u=0$ a.e\. on $[0,1]$ with $u$ satisfying Sturm Liouville or Periodic boundary data.
@article{CMUC_1995_36_4_a5,
author = {O'Regan, Donal},
title = {Differential equations at resonance},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {673--694},
year = {1995},
volume = {36},
number = {4},
mrnumber = {1378689},
zbl = {0843.34029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995_36_4_a5/}
}
O'Regan, Donal. Differential equations at resonance. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 673-694. http://geodesic.mathdoc.fr/item/CMUC_1995_36_4_a5/