On the sequence of integer parts of a good sequence for the ergodic theorem
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 737-743
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
If $(u_n)$ is a sequence of real numbers which is good for the ergodic theorem, is the sequence of the integer parts $([u_n])$ good for the ergodic theorem\,? The answer is negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.
If $(u_n)$ is a sequence of real numbers which is good for the ergodic theorem, is the sequence of the integer parts $([u_n])$ good for the ergodic theorem\,? The answer is negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.
Classification :
28D10, 40A30, 60F25
Keywords: ergodic theorem along subsequences; Banach principle
Keywords: ergodic theorem along subsequences; Banach principle
@article{CMUC_1995_36_4_a11,
author = {Lesigne, Emmanuel},
title = {On the sequence of integer parts of a good sequence for the ergodic theorem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {737--743},
year = {1995},
volume = {36},
number = {4},
mrnumber = {1378695},
zbl = {0868.28010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995_36_4_a11/}
}
TY - JOUR AU - Lesigne, Emmanuel TI - On the sequence of integer parts of a good sequence for the ergodic theorem JO - Commentationes Mathematicae Universitatis Carolinae PY - 1995 SP - 737 EP - 743 VL - 36 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1995_36_4_a11/ LA - en ID - CMUC_1995_36_4_a11 ER -
Lesigne, Emmanuel. On the sequence of integer parts of a good sequence for the ergodic theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 737-743. http://geodesic.mathdoc.fr/item/CMUC_1995_36_4_a11/