A full descriptive definition of the BV-integral
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 3, pp. 461-469
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We present a Cauchy test for the almost derivability of additive functions of bounded BV sets. The test yields a full descriptive definition of a coordinate free Riemann type integral.
We present a Cauchy test for the almost derivability of additive functions of bounded BV sets. The test yields a full descriptive definition of a coordinate free Riemann type integral.
Classification :
26A39, 26B30, 28A75
Keywords: Perimeter; partition; gage; absolute continuity
Keywords: Perimeter; partition; gage; absolute continuity
@article{CMUC_1995_36_3_a6,
author = {Bongiorno, B. and Di Piazza, L. and Pfeffer, W. F.},
title = {A full descriptive definition of the {BV-integral}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {461--469},
year = {1995},
volume = {36},
number = {3},
mrnumber = {1364486},
zbl = {0842.26009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995_36_3_a6/}
}
TY - JOUR AU - Bongiorno, B. AU - Di Piazza, L. AU - Pfeffer, W. F. TI - A full descriptive definition of the BV-integral JO - Commentationes Mathematicae Universitatis Carolinae PY - 1995 SP - 461 EP - 469 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1995_36_3_a6/ LA - en ID - CMUC_1995_36_3_a6 ER -
Bongiorno, B.; Di Piazza, L.; Pfeffer, W. F. A full descriptive definition of the BV-integral. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 3, pp. 461-469. http://geodesic.mathdoc.fr/item/CMUC_1995_36_3_a6/