A note on intersection dimensions of graph classes
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 2, pp. 255-261
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The intersection dimension of a graph $G$ with respect to a class $\Cal A$ of graphs is the minimum $k$ such that $G$ is the intersection of some $k$ graphs on the vertex set $V(G)$ belonging to $\Cal A$. In this paper we follow [\,Kratochv'\i l J., Tuza Z.: {\sl Intersection dimensions of graph classes\/}, Graphs and Combinatorics 10 (1994), 159--168\,] and show that for some pairs of graph classes $\Cal A$, $\Cal B$ the intersection dimension of graphs from $\Cal B$ with respect to $\Cal A$ is unbounded.
The intersection dimension of a graph $G$ with respect to a class $\Cal A$ of graphs is the minimum $k$ such that $G$ is the intersection of some $k$ graphs on the vertex set $V(G)$ belonging to $\Cal A$. In this paper we follow [\,Kratochv'\i l J., Tuza Z.: {\sl Intersection dimensions of graph classes\/}, Graphs and Combinatorics 10 (1994), 159--168\,] and show that for some pairs of graph classes $\Cal A$, $\Cal B$ the intersection dimension of graphs from $\Cal B$ with respect to $\Cal A$ is unbounded.
Classification :
05C10, 05C30, 05C70, 05C75
Keywords: intersection graph; intersection dimension
Keywords: intersection graph; intersection dimension
@article{CMUC_1995_36_2_a5,
author = {Hlin\v{e}n\'y, Petr and Kub\v{e}na, Ale\v{s}},
title = {A note on intersection dimensions of graph classes},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {255--261},
year = {1995},
volume = {36},
number = {2},
mrnumber = {1357527},
zbl = {0838.05042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995_36_2_a5/}
}
Hliněný, Petr; Kuběna, Aleš. A note on intersection dimensions of graph classes. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 2, pp. 255-261. http://geodesic.mathdoc.fr/item/CMUC_1995_36_2_a5/